Cargando…
Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness
Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This pa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000660/ https://www.ncbi.nlm.nih.gov/pubmed/35407290 http://dx.doi.org/10.3390/nano12071172 |
_version_ | 1784685488920068096 |
---|---|
author | Al-Khafaji, Mohammed A. Gaál, Anikó Jezsó, Bálint Mihály, Judith Bartczak, Dorota Goenaga-Infante, Heidi Varga, Zoltán |
author_facet | Al-Khafaji, Mohammed A. Gaál, Anikó Jezsó, Bálint Mihály, Judith Bartczak, Dorota Goenaga-Infante, Heidi Varga, Zoltán |
author_sort | Al-Khafaji, Mohammed A. |
collection | PubMed |
description | Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles′ morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia. |
format | Online Article Text |
id | pubmed-9000660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90006602022-04-12 Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness Al-Khafaji, Mohammed A. Gaál, Anikó Jezsó, Bálint Mihály, Judith Bartczak, Dorota Goenaga-Infante, Heidi Varga, Zoltán Nanomaterials (Basel) Article Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles′ morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia. MDPI 2022-04-01 /pmc/articles/PMC9000660/ /pubmed/35407290 http://dx.doi.org/10.3390/nano12071172 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Al-Khafaji, Mohammed A. Gaál, Anikó Jezsó, Bálint Mihály, Judith Bartczak, Dorota Goenaga-Infante, Heidi Varga, Zoltán Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness |
title | Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness |
title_full | Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness |
title_fullStr | Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness |
title_full_unstemmed | Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness |
title_short | Synthesis of Porous Hollow Organosilica Particles with Tunable Shell Thickness |
title_sort | synthesis of porous hollow organosilica particles with tunable shell thickness |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000660/ https://www.ncbi.nlm.nih.gov/pubmed/35407290 http://dx.doi.org/10.3390/nano12071172 |
work_keys_str_mv | AT alkhafajimohammeda synthesisofporousholloworganosilicaparticleswithtunableshellthickness AT gaalaniko synthesisofporousholloworganosilicaparticleswithtunableshellthickness AT jezsobalint synthesisofporousholloworganosilicaparticleswithtunableshellthickness AT mihalyjudith synthesisofporousholloworganosilicaparticleswithtunableshellthickness AT bartczakdorota synthesisofporousholloworganosilicaparticleswithtunableshellthickness AT goenagainfanteheidi synthesisofporousholloworganosilicaparticleswithtunableshellthickness AT vargazoltan synthesisofporousholloworganosilicaparticleswithtunableshellthickness |