Cargando…
Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra
Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000797/ https://www.ncbi.nlm.nih.gov/pubmed/35408551 http://dx.doi.org/10.3390/molecules27072153 |
_version_ | 1784685524071481344 |
---|---|
author | Ren, Hai-Chao Ji, Lin-Xiang Chen, Tu-Nan Jia, Xian-Zhen Liu, Rui-Peng Zhang, Xiu-Qing Wei, Dong-Qing Wang, Xiao-Feng Ji, Guang-Fu |
author_facet | Ren, Hai-Chao Ji, Lin-Xiang Chen, Tu-Nan Jia, Xian-Zhen Liu, Rui-Peng Zhang, Xiu-Qing Wei, Dong-Qing Wang, Xiao-Feng Ji, Guang-Fu |
author_sort | Ren, Hai-Chao |
collection | PubMed |
description | Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials. |
format | Online Article Text |
id | pubmed-9000797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90007972022-04-12 Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra Ren, Hai-Chao Ji, Lin-Xiang Chen, Tu-Nan Jia, Xian-Zhen Liu, Rui-Peng Zhang, Xiu-Qing Wei, Dong-Qing Wang, Xiao-Feng Ji, Guang-Fu Molecules Article Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials. MDPI 2022-03-26 /pmc/articles/PMC9000797/ /pubmed/35408551 http://dx.doi.org/10.3390/molecules27072153 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ren, Hai-Chao Ji, Lin-Xiang Chen, Tu-Nan Jia, Xian-Zhen Liu, Rui-Peng Zhang, Xiu-Qing Wei, Dong-Qing Wang, Xiao-Feng Ji, Guang-Fu Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra |
title | Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra |
title_full | Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra |
title_fullStr | Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra |
title_full_unstemmed | Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra |
title_short | Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra |
title_sort | intermolecular vibration energy transfer process in two cl-20-based cocrystals theoretically revealed by two-dimensional infrared spectra |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000797/ https://www.ncbi.nlm.nih.gov/pubmed/35408551 http://dx.doi.org/10.3390/molecules27072153 |
work_keys_str_mv | AT renhaichao intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT jilinxiang intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT chentunan intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT jiaxianzhen intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT liuruipeng intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT zhangxiuqing intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT weidongqing intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT wangxiaofeng intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra AT jiguangfu intermolecularvibrationenergytransferprocessintwocl20basedcocrystalstheoreticallyrevealedbytwodimensionalinfraredspectra |