Cargando…

HESI-MS/MS Analysis of Phenolic Compounds from Calendula aegyptiaca Fruits Extracts and Evaluation of Their Antioxidant Activities

Considering medicinal plants as an inexhaustible source of active ingredients that may be easily isolated using simple and inexpensive techniques, phytotherapy is becoming increasingly popular. Various experimental approaches and analytical methods have been used to demonstrate that the genus Calend...

Descripción completa

Detalles Bibliográficos
Autores principales: Grati, Wafa, Samet, Sonda, Bouzayani, Bouthaina, Ayachi, Amani, Treilhou, Michel, Téné, Nathan, Mezghani-Jarraya, Raoudha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000822/
https://www.ncbi.nlm.nih.gov/pubmed/35408713
http://dx.doi.org/10.3390/molecules27072314
Descripción
Sumario:Considering medicinal plants as an inexhaustible source of active ingredients that may be easily isolated using simple and inexpensive techniques, phytotherapy is becoming increasingly popular. Various experimental approaches and analytical methods have been used to demonstrate that the genus Calendula (Asteraceae) has a particular richness in active ingredients, especially phenolic compounds, which justifies the growing interest in scientific studies on this genus’ species. From a chemical and biological viewpoint, Calendula aegyptiaca is a little-studied plant. For the first time, high-performance liquid chromatography combined with negative electrospray ionization mass spectrometry (HPLC-HESI-MS) was used to analyze methanolic extracts of Calendula aegyptiaca (C. aegyptiaca) fruits. Thirty-five molecules were identified. Flavonoids (47.87%), phenolic acids (5.18%), and saponins (6.47%) formed the majority of these chemicals. Rutin, caffeic acid hexoside, and Soyasaponin βg’ were the most abundant molecules in the fruit methanolic extract, accounting for 17.49% of total flavonoids, 2.32 % of total phenolic acids, and 0.95% of total saponins, respectively. The antioxidant activity of the fruit extracts of C. aegyptiaca was investigated using FRAP, TAC, and DPPH as well as flavonoids and total phenols content. Because the phenolic components were more extractable using polar solvents, the antioxidant activity of the methanolic extract was found to be higher than that of the dichloromethane and hexane extracts. The IC50 value for DPPH of methanolic extract was found to be 0.041 mg·mL(−1). Our findings showed that C. aegyptiaca is an important source of physiologically active compounds.