Cargando…

Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG

Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children. At the same time, ADHD is prone to coexist with other mental disorders, so the diagnosis of ADHD in children is very important. Electroencephalogram (EEG) is the sum of the electrical activity of loc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Dingfu, Liao, Zhihang, Chen, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001066/
https://www.ncbi.nlm.nih.gov/pubmed/35419186
http://dx.doi.org/10.1155/2022/5222136
_version_ 1784685583751184384
author Zhou, Dingfu
Liao, Zhihang
Chen, Rong
author_facet Zhou, Dingfu
Liao, Zhihang
Chen, Rong
author_sort Zhou, Dingfu
collection PubMed
description Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children. At the same time, ADHD is prone to coexist with other mental disorders, so the diagnosis of ADHD in children is very important. Electroencephalogram (EEG) is the sum of the electrical activity of local neurons recorded from the extracranial scalp or intracranial. At present, there are two main methods of long-range EEG monitoring commonly used in clinical practice: one is ambulatory EEG monitoring, and the other is long-range video EEG monitoring. The purpose of this study is to summarize the brain electrical activity and clinical characteristics of children with ADHD through the video long-range computer graphics data of children with ADHD and to explore the clinical significance of video long-range EEG in the diagnosis of children with ADHD. For a more effective analysis, this study further processed the video data of long-range computer graphics of children with ADHD and constructed several neural network algorithm models based on deep learning, mainly including fully connected neural network models and two-dimensional convolutional neural networks. Model and long- and short-term memory neural network model. By comparing the recognition effects of these several algorithms, find the appropriate recognition algorithm to improve the accuracy and then establish a recognition method for the diagnosis of children's ADHD based on deep learning long-range EEG big data. Finally, it is concluded that long-term video EEG can analyze the EEG relationship of children with ADHD and provide a diagnostic basis for the diagnosis of ADHD.
format Online
Article
Text
id pubmed-9001066
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-90010662022-04-12 Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG Zhou, Dingfu Liao, Zhihang Chen, Rong J Healthc Eng Research Article Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children. At the same time, ADHD is prone to coexist with other mental disorders, so the diagnosis of ADHD in children is very important. Electroencephalogram (EEG) is the sum of the electrical activity of local neurons recorded from the extracranial scalp or intracranial. At present, there are two main methods of long-range EEG monitoring commonly used in clinical practice: one is ambulatory EEG monitoring, and the other is long-range video EEG monitoring. The purpose of this study is to summarize the brain electrical activity and clinical characteristics of children with ADHD through the video long-range computer graphics data of children with ADHD and to explore the clinical significance of video long-range EEG in the diagnosis of children with ADHD. For a more effective analysis, this study further processed the video data of long-range computer graphics of children with ADHD and constructed several neural network algorithm models based on deep learning, mainly including fully connected neural network models and two-dimensional convolutional neural networks. Model and long- and short-term memory neural network model. By comparing the recognition effects of these several algorithms, find the appropriate recognition algorithm to improve the accuracy and then establish a recognition method for the diagnosis of children's ADHD based on deep learning long-range EEG big data. Finally, it is concluded that long-term video EEG can analyze the EEG relationship of children with ADHD and provide a diagnostic basis for the diagnosis of ADHD. Hindawi 2022-04-04 /pmc/articles/PMC9001066/ /pubmed/35419186 http://dx.doi.org/10.1155/2022/5222136 Text en Copyright © 2022 Dingfu Zhou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zhou, Dingfu
Liao, Zhihang
Chen, Rong
Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG
title Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG
title_full Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG
title_fullStr Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG
title_full_unstemmed Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG
title_short Deep Learning Enabled Diagnosis of Children's ADHD Based on the Big Data of Video Screen Long-Range EEG
title_sort deep learning enabled diagnosis of children's adhd based on the big data of video screen long-range eeg
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001066/
https://www.ncbi.nlm.nih.gov/pubmed/35419186
http://dx.doi.org/10.1155/2022/5222136
work_keys_str_mv AT zhoudingfu deeplearningenableddiagnosisofchildrensadhdbasedonthebigdataofvideoscreenlongrangeeeg
AT liaozhihang deeplearningenableddiagnosisofchildrensadhdbasedonthebigdataofvideoscreenlongrangeeeg
AT chenrong deeplearningenableddiagnosisofchildrensadhdbasedonthebigdataofvideoscreenlongrangeeeg