Cargando…
Neurogenerative Disease Diagnosis in Cepstral Domain Using MFCC with Deep Learning
Because underlying cognitive and neuromuscular activities regulate speech signals, biomarkers in the human voice can provide insight into neurological illnesses. Multiple motor and nonmotor aspects of neurologic voice disorders arise from an underlying neurologic condition such as Parkinson's d...
Autores principales: | Alghamdi, Norah Saleh, Zakariah, Mohammed, Hoang, Vinh Truong, Elahi, Mohammad Mamun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001083/ https://www.ncbi.nlm.nih.gov/pubmed/35419079 http://dx.doi.org/10.1155/2022/4364186 |
Ejemplares similares
-
An Analytical Study of Speech Pathology Detection Based on MFCC and Deep Neural Networks
por: Zakariah, Mohammed, et al.
Publicado: (2022) -
The MFCC-ROBIN in the DAQ/EF -1 Project
por: Francis, D, et al.
Publicado: (2000) -
Cepstral Analysis of Voice in Patients With Thyroidectomy
por: Shin, Yu Jeong, et al.
Publicado: (2016) -
Analysis of Smartphone Recordings in Time, Frequency, and Cepstral Domains to Classify Parkinson’s Disease
por: Tougui, Ilias, et al.
Publicado: (2020) -
Cepstral Peak Prominence Values for Clinical Voice Evaluation
por: Murton, Olivia, et al.
Publicado: (2020)