A Proposed Framework for Evaluating the Academic-failure Prediction in Distance Learning

Academic failure is a crucial problem that affects not only students but also institutions and countries. Lack of success in the educational process can lead to health and social disorders and economic losses. Consequently, predicting in advance the occurrence of this event is a good prevention and...

Descripción completa

Detalles Bibliográficos
Autores principales: Takaki, Patrícia, Dutra, Moisés Lima, de Araújo, Gustavo, Júnior, Eugênio Monteiro da Silva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001114/
http://dx.doi.org/10.1007/s11036-022-01965-z
Descripción
Sumario:Academic failure is a crucial problem that affects not only students but also institutions and countries. Lack of success in the educational process can lead to health and social disorders and economic losses. Consequently, predicting in advance the occurrence of this event is a good prevention and mitigation strategy. This work proposes a framework to evaluate machine learning-based predictive models of academic failure, to facilitate early pedagogical interventions. We took a Brazilian undergraduate course in the distance learning modality as a case study. We run seven classification models on normalized datasets, which comprised grades for three weeks of classes for a total of six weeks. Since it is an imbalanced-data context, adopting a single metric to identify the best predictive model of student failure would not be efficient. Therefore, the proposed framework considers 11 metrics generated by the classifiers run and the application of exclusion and ordering criteria to produce a list of best predictors. Finally, we discussed and presented some possible applications for minimizing the students’ failure.