Cargando…
Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos
Human Activity Recognition is an active research area with several Convolutional Neural Network (CNN) based features extraction and classification methods employed for surveillance and other applications. However, accurate identification of HAR from a sequence of frames is a challenging task due to...
Autores principales: | Hussain, Altaf, Hussain, Tanveer, Ullah, Waseem, Baik, Sung Wook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001125/ https://www.ncbi.nlm.nih.gov/pubmed/35419045 http://dx.doi.org/10.1155/2022/3454167 |
Ejemplares similares
-
An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
por: Ullah, Waseem, et al.
Publicado: (2021) -
Abnormal Activity Recognition from Surveillance Videos Using Convolutional Neural Network
por: Habib, Shabana, et al.
Publicado: (2021) -
Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
por: Khan, Sardar Waqar, et al.
Publicado: (2022) -
Vision-Based HAR in UAV Videos Using Histograms and Deep Learning Techniques
por: Gundu, Sireesha, et al.
Publicado: (2023) -
Efficient anomaly recognition using surveillance videos
por: Saleem, Gulshan, et al.
Publicado: (2022)