Cargando…
Comparison of Machine Learning Methods Using Spectralis OCT for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis
Machine learning approaches in diagnosis and prognosis of multiple sclerosis (MS) were analysed using retinal nerve fiber layer (RNFL) thickness, measured by optical coherence tomography (OCT). A cross-sectional study (72 MS patients and 30 healthy controls) was used for diagnosis. These 72 MS patie...
Autores principales: | Montolío, Alberto, Cegoñino, José, Garcia-Martin, Elena, Pérez del Palomar, Amaya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001622/ https://www.ncbi.nlm.nih.gov/pubmed/35220529 http://dx.doi.org/10.1007/s10439-022-02930-3 |
Ejemplares similares
-
Swept source optical coherence tomography to early detect multiple sclerosis disease. The use of machine learning techniques
por: Pérez del Palomar, Amaya, et al.
Publicado: (2019) -
Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT
por: Wu, Chao-Wei, et al.
Publicado: (2021) -
The Innate Immune Cell Profile of the Cornea Predicts the Onset of Ocular Surface Inflammatory Disorders
por: del Palomar, Amaya Pérez, et al.
Publicado: (2019) -
Glaucoma Detection Using Support Vector Machine Method Based on Spectralis OCT
por: Wu, Chao-Wei, et al.
Publicado: (2022) -
Reproducibility and Reliability of Spectralis II OCT Angiography Vascular Measurements
por: Pastore, Marco R., et al.
Publicado: (2022)