Cargando…
A sampling approach to Debiasing the offline evaluation of recommender systems
Offline evaluation of recommender systems (RSs) mostly relies on historical data, which is often biased. The bias is a result of many confounders that affect the data collection process. In such biased data, user-item interactions are Missing Not At Random (MNAR). Measures of recommender system perf...
Autores principales: | Carraro, Diego, Bridge, Derek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001624/ https://www.ncbi.nlm.nih.gov/pubmed/35493700 http://dx.doi.org/10.1007/s10844-021-00651-y |
Ejemplares similares
-
Cognitive debiasing 1: origins of bias and theory of debiasing
por: Croskerry, Pat, et al.
Publicado: (2013) -
The Debiased Spatial Whittle likelihood
por: Guillaumin, Arthur P., et al.
Publicado: (2022) -
Cognitive debiasing 2: impediments to and strategies for change
por: Croskerry, Pat, et al.
Publicado: (2013) -
Offline Evaluation of Recommender Systems in a User Interface With Multiple Carousels
por: Ferrari Dacrema, Maurizio, et al.
Publicado: (2022) -
Systematic auditing is essential to debiasing machine learning in biology
por: Eid, Fatma-Elzahraa, et al.
Publicado: (2021)