Cargando…

Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows

Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop du...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Woongchan, Yoo, Young Jin, Park, Jinhong, Ko, Joo Hwan, Kim, Yeong Jae, Yun, Huiwon, Kim, Dong Hoe, Song, Young Min, Kim, Dae-Hyeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001655/
https://www.ncbi.nlm.nih.gov/pubmed/35410337
http://dx.doi.org/10.1038/s41467-022-29602-z
Descripción
Sumario:Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal–insulator–metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity.