Cargando…
Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics
Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential for understanding the natural processes and design of highly-efficient photovoltaic devices. LHCs are open systems, where quantum effects may play a crucial role for almost perfect utilization of solar energ...
Autores principales: | Ullah, Arif, Dral, Pavlo O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001686/ https://www.ncbi.nlm.nih.gov/pubmed/35411054 http://dx.doi.org/10.1038/s41467-022-29621-w |
Ejemplares similares
-
Artificial intelligence-enhanced quantum chemical method with broad applicability
por: Zheng, Peikun, et al.
Publicado: (2021) -
Nonadiabatic Excited-State Dynamics with Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2018) -
The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis
por: Schiphorst, Christo, et al.
Publicado: (2021) -
Direct Evidence for Excitation Energy Transfer Limitations
Imposed by Low-Energy Chlorophylls in Photosystem I–Light Harvesting
Complex I of Land Plants
por: Russo, Mattia, et al.
Publicado: (2021) -
Optimal Energy Transfer in Light-Harvesting Systems
por: Chen, Lipeng, et al.
Publicado: (2015)