Cargando…
Carbonized paramagnetic complexes of Mn (II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors
Paramagnetic complexes containing gadolinium ions have been widely used for magnetic resonance imaging (MRI) in clinic. However, these paramagnetic complexes pose some safety concerns. There is still a demand for the development of stable MRI contrast agents that exhibit higher sensitivity and super...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001709/ https://www.ncbi.nlm.nih.gov/pubmed/35411006 http://dx.doi.org/10.1038/s41467-022-29586-w |
Sumario: | Paramagnetic complexes containing gadolinium ions have been widely used for magnetic resonance imaging (MRI) in clinic. However, these paramagnetic complexes pose some safety concerns. There is still a demand for the development of stable MRI contrast agents that exhibit higher sensitivity and superior functionality to existing contrast agents. Here, we develop carbonized paramagnetic complexes of manganese (II) (Mn@CCs) to encapsulate Mn(2+) in sealed carbonized shells with superhigh r(1) relaxivity. Compared to the most common clinical contrast agent Magnevist, investigations in vivo demonstrate that the Mn@CCs cross the intact blood-brain barrier of normal health mice with minor metal deposition; preferentially target the glioma tissues distribute homogeneously with high penetration in an intracranial mouse model; delineate clear tumor margins in MRIs of ultrasmall single-nodule brain tumors, and multi-nodular liver tumors. The sensitivity, accuracy and low toxicity offer by Mn@CCs provides new opportunities for early molecular diagnostics and imaging-guided biomedical applications. |
---|