Cargando…
Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers
In many cases of machine learning, research suggests that the development of training data might have a higher relevance than the choice and modelling of classifiers themselves. Thus, data augmentation methods have been developed to improve classifiers by artificially created training data. In NLP,...
Autores principales: | Bayer, Markus, Kaufhold, Marc-André, Buchhold, Björn, Keller, Marcel, Dallmeyer, Jörg, Reuter, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001823/ https://www.ncbi.nlm.nih.gov/pubmed/35432623 http://dx.doi.org/10.1007/s13042-022-01553-3 |
Ejemplares similares
-
Augmenting Qualitative Text Analysis with Natural Language Processing: Methodological Study
por: Guetterman, Timothy C, et al.
Publicado: (2018) -
Semantic search on text and knowledge bases
por: Bast, Hannah, et al.
Publicado: (2016) -
Research and Implementation of Text Generation Based on Text Augmentation and Knowledge Understanding
por: Liu, Lei, et al.
Publicado: (2022) -
Classification of cervical biopsy free-text diagnoses through linear-classifier based natural language processing
por: Hsu, Jim Wei-Chun, et al.
Publicado: (2022) -
'Language functions, text-categories and text-types'
por: Cañada Figueroa, Liliana
Publicado: (1999)