Cargando…
Colour vision in stomatopod crustaceans: more questions than answers
Stomatopod crustaceans, or mantis shrimps, are known for their extensive range of spectral sensitivity but relatively poor spectral discrimination. Instead of the colour-opponent mechanism of other colour vision systems, the 12 narrow-band colour channels they possess may underlie a different method...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001920/ https://www.ncbi.nlm.nih.gov/pubmed/35224643 http://dx.doi.org/10.1242/jeb.243699 |
Sumario: | Stomatopod crustaceans, or mantis shrimps, are known for their extensive range of spectral sensitivity but relatively poor spectral discrimination. Instead of the colour-opponent mechanism of other colour vision systems, the 12 narrow-band colour channels they possess may underlie a different method of colour processing. We investigated one hypothesis in which the photoreceptors are proposed to act as individual wave-band detectors, interpreting colour as a parallel pattern of photoreceptor activation, rather than a ratiometric comparison of individual signals. This different form of colour detection has been used to explain previous behavioural tests in which low-saturation blue was not discriminated from grey, potentially because of similar activation patterns. Results here, however, indicate that the stomatopod Haptosquilla trispinosa was able to easily distinguish several colours, including blue of both high and low saturation, from greys. The animals did show a decrease in performance over time in an artificially lit environment, indicating plasticity in colour discrimination ability. This rapid plasticity, most likely the result of a change in opsin (visual pigment) expression, has now been noted in several animal lineages (both invertebrate and vertebrate) and is a factor we suggest needs attention and potential re-examination in any colour-based behavioural tests. As for stomatopods, it remains unclear why they achieve poor colour discrimination using the most comprehensive set of spectral sensitivities in the animal kingdom and also what form of colour processing they may utilise. |
---|