Cargando…
TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types
A major issue in the use of immune checkpoint inhibitors is their lack of efficacy in many patients. Previous studies have reported that the T cell inflamed signature can help predict the response to immunotherapy. Thus, many studies have investigated mechanisms of immunotherapy resistance by defini...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001994/ https://www.ncbi.nlm.nih.gov/pubmed/35399012 http://dx.doi.org/10.5808/gi.22005 |
_version_ | 1784685796040638464 |
---|---|
author | Yang, San-Duk Park, Hyun-Seok |
author_facet | Yang, San-Duk Park, Hyun-Seok |
author_sort | Yang, San-Duk |
collection | PubMed |
description | A major issue in the use of immune checkpoint inhibitors is their lack of efficacy in many patients. Previous studies have reported that the T cell inflamed signature can help predict the response to immunotherapy. Thus, many studies have investigated mechanisms of immunotherapy resistance by defining the tumor microenvironment based on T cell inflamed and non–T cell inflamed subsets. Although methods of calculating T cell inflamed subsets have been developed, valid screening tools for distinguishing T cell inflamed from non–T cell inflamed subsets using gene expression data are still needed, since general researchers who are unfamiliar with the details of the equations can experience difficulties using extant scoring formulas to conduct analyses. Thus, we introduce TcellInflamedDetector, an R package for distinguishing T cell inflamed from non–T cell inflamed samples using cancer gene expression data via bulk RNA sequencing. |
format | Online Article Text |
id | pubmed-9001994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Korea Genome Organization |
record_format | MEDLINE/PubMed |
spelling | pubmed-90019942022-04-21 TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types Yang, San-Duk Park, Hyun-Seok Genomics Inform Application Note A major issue in the use of immune checkpoint inhibitors is their lack of efficacy in many patients. Previous studies have reported that the T cell inflamed signature can help predict the response to immunotherapy. Thus, many studies have investigated mechanisms of immunotherapy resistance by defining the tumor microenvironment based on T cell inflamed and non–T cell inflamed subsets. Although methods of calculating T cell inflamed subsets have been developed, valid screening tools for distinguishing T cell inflamed from non–T cell inflamed subsets using gene expression data are still needed, since general researchers who are unfamiliar with the details of the equations can experience difficulties using extant scoring formulas to conduct analyses. Thus, we introduce TcellInflamedDetector, an R package for distinguishing T cell inflamed from non–T cell inflamed samples using cancer gene expression data via bulk RNA sequencing. Korea Genome Organization 2022-03-31 /pmc/articles/PMC9001994/ /pubmed/35399012 http://dx.doi.org/10.5808/gi.22005 Text en (c) 2022, Korea Genome Organization https://creativecommons.org/licenses/by/4.0/(CC) This is an open-access article distributed under the terms of the Creative Commons Attribution license(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Application Note Yang, San-Duk Park, Hyun-Seok TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types |
title | TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types |
title_full | TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types |
title_fullStr | TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types |
title_full_unstemmed | TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types |
title_short | TcellInflamedDetector: an R package to distinguish T cell inflamed tumor types from non–T cell inflamed tumor types |
title_sort | tcellinflameddetector: an r package to distinguish t cell inflamed tumor types from non–t cell inflamed tumor types |
topic | Application Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9001994/ https://www.ncbi.nlm.nih.gov/pubmed/35399012 http://dx.doi.org/10.5808/gi.22005 |
work_keys_str_mv | AT yangsanduk tcellinflameddetectoranrpackagetodistinguishtcellinflamedtumortypesfromnontcellinflamedtumortypes AT parkhyunseok tcellinflameddetectoranrpackagetodistinguishtcellinflamedtumortypesfromnontcellinflamedtumortypes |