Cargando…

Upper limb isokinetic muscle strength predicts the performance in cross-country sit-skiing

The double poling (DP) technique in cross-country sit-skiing is primarily considered as an upper-body exercise. The upper limb muscle strength and motion economy are important factors accounting for DP performance in cross-country sit-skiing. The present study investigates how upper limb muscle stre...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chenglin, Tian, Yuan, Zhou, Longfeng, Tian, Zhulin, Sun, Gang, Yin, Jun, Zhou, Zhixiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002028/
https://www.ncbi.nlm.nih.gov/pubmed/35414091
http://dx.doi.org/10.1038/s41598-022-10103-4
Descripción
Sumario:The double poling (DP) technique in cross-country sit-skiing is primarily considered as an upper-body exercise. The upper limb muscle strength and motion economy are important factors accounting for DP performance in cross-country sit-skiing. The present study investigates how upper limb muscle strength predicts DP performance in cross-country sit-skiing. A total of 19 female non-disabled college students (age 23.2 ± 0.8 years, BMI 20.4 ± 2.2) performed 30-s and 3-min DP performance tests using a sit-skiing ergometer. Isokinetic muscle strength of the shoulder and elbow extensor were measured at the angular velocity of 30°/s, 60°/s, and 120°/s with an ISOMED2000 isokinetic system. A medium correlation was found between DP output power and isokinetic upper limb muscle strength (shoulder strength at all speeds, r = 0.39–0.74, p ≤ 0.1). Multiple regression analyses which were employed to predict power production in the 30-s and 3-min tests showed that shoulder extension strength at 60°/s accounted for 34% of the variation in the 30-s test, and 40% of the variance in the 3-min test. Muscle strength and biomechanical analysis of DP process indicated that upper limb extensor muscle strength and muscle coordination were important factors for the power output generation in sit-skiing DP. These results may use to guide special physical fitness training for paralympic cross-country sit-skiing.