Cargando…
Medical image segmentation model based on triple gate MultiLayer perceptron
To alleviate the social contradiction between limited medical resources and increasing medical needs, the medical image-assisted diagnosis based on deep learning has become the research focus in Wise Information Technology of med. Most of the existing medical segmentation models based on Convolution...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002230/ https://www.ncbi.nlm.nih.gov/pubmed/35413958 http://dx.doi.org/10.1038/s41598-022-09452-x |
_version_ | 1784685848414912512 |
---|---|
author | Yan, Jingke Wang, Xin Cai, Jingye Qin, Qin Yang, Hao Wang, Qin Cheng, Yao Gan, Tian Jiang, Hua Deng, Jianhua Chen, Bingxu |
author_facet | Yan, Jingke Wang, Xin Cai, Jingye Qin, Qin Yang, Hao Wang, Qin Cheng, Yao Gan, Tian Jiang, Hua Deng, Jianhua Chen, Bingxu |
author_sort | Yan, Jingke |
collection | PubMed |
description | To alleviate the social contradiction between limited medical resources and increasing medical needs, the medical image-assisted diagnosis based on deep learning has become the research focus in Wise Information Technology of med. Most of the existing medical segmentation models based on Convolution or Transformer have achieved relatively sound effects. However, the Convolution-based model with a limited receptive field cannot establish long-distance dependencies between features as the Network deepens. The Transformer-based model produces large computation overhead and cannot generalize the bias of local features and perceive the position feature of medical images, which are essential in medical image segmentation. To address those issues, we present Triple Gate MultiLayer Perceptron U-Net (TGMLP U-Net), a medical image segmentation model based on MLP, in which we design the Triple Gate MultiLayer Perceptron (TGMLP), composed of three parts. Firstly, considering encoding the position information of features, we propose the Triple MLP module based on MultiLayer Perceptron in this model. It uses linear projection to encode features from the high, wide, and channel dimensions, enabling the model to capture the long-distance dependence of features along the spatial dimension and the precise position information of features in three dimensions with less computational overhead. Then, we design the Local Priors and Global Perceptron module. The Global Perceptron divides the feature map into different partitions and conducts correlation modelling for each partition to establish the global dependency between partitions. The Local Priors uses multi-scale Convolution with high local feature extraction ability to explore further the relationship of context feature information within the structure. At last, we suggest a Gate-controlled Mechanism to effectively solves the problem that the dependence of position embeddings between Patches and within Patches in medical images cannot be well learned due to the relatively small number of samples in medical images segmentation data. Experimental results indicate that the proposed model outperforms other state-of-the-art models in most evaluation indicators, demonstrating its excellent performance in segmenting medical images. |
format | Online Article Text |
id | pubmed-9002230 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90022302022-04-12 Medical image segmentation model based on triple gate MultiLayer perceptron Yan, Jingke Wang, Xin Cai, Jingye Qin, Qin Yang, Hao Wang, Qin Cheng, Yao Gan, Tian Jiang, Hua Deng, Jianhua Chen, Bingxu Sci Rep Article To alleviate the social contradiction between limited medical resources and increasing medical needs, the medical image-assisted diagnosis based on deep learning has become the research focus in Wise Information Technology of med. Most of the existing medical segmentation models based on Convolution or Transformer have achieved relatively sound effects. However, the Convolution-based model with a limited receptive field cannot establish long-distance dependencies between features as the Network deepens. The Transformer-based model produces large computation overhead and cannot generalize the bias of local features and perceive the position feature of medical images, which are essential in medical image segmentation. To address those issues, we present Triple Gate MultiLayer Perceptron U-Net (TGMLP U-Net), a medical image segmentation model based on MLP, in which we design the Triple Gate MultiLayer Perceptron (TGMLP), composed of three parts. Firstly, considering encoding the position information of features, we propose the Triple MLP module based on MultiLayer Perceptron in this model. It uses linear projection to encode features from the high, wide, and channel dimensions, enabling the model to capture the long-distance dependence of features along the spatial dimension and the precise position information of features in three dimensions with less computational overhead. Then, we design the Local Priors and Global Perceptron module. The Global Perceptron divides the feature map into different partitions and conducts correlation modelling for each partition to establish the global dependency between partitions. The Local Priors uses multi-scale Convolution with high local feature extraction ability to explore further the relationship of context feature information within the structure. At last, we suggest a Gate-controlled Mechanism to effectively solves the problem that the dependence of position embeddings between Patches and within Patches in medical images cannot be well learned due to the relatively small number of samples in medical images segmentation data. Experimental results indicate that the proposed model outperforms other state-of-the-art models in most evaluation indicators, demonstrating its excellent performance in segmenting medical images. Nature Publishing Group UK 2022-04-12 /pmc/articles/PMC9002230/ /pubmed/35413958 http://dx.doi.org/10.1038/s41598-022-09452-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Yan, Jingke Wang, Xin Cai, Jingye Qin, Qin Yang, Hao Wang, Qin Cheng, Yao Gan, Tian Jiang, Hua Deng, Jianhua Chen, Bingxu Medical image segmentation model based on triple gate MultiLayer perceptron |
title | Medical image segmentation model based on triple gate MultiLayer perceptron |
title_full | Medical image segmentation model based on triple gate MultiLayer perceptron |
title_fullStr | Medical image segmentation model based on triple gate MultiLayer perceptron |
title_full_unstemmed | Medical image segmentation model based on triple gate MultiLayer perceptron |
title_short | Medical image segmentation model based on triple gate MultiLayer perceptron |
title_sort | medical image segmentation model based on triple gate multilayer perceptron |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002230/ https://www.ncbi.nlm.nih.gov/pubmed/35413958 http://dx.doi.org/10.1038/s41598-022-09452-x |
work_keys_str_mv | AT yanjingke medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT wangxin medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT caijingye medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT qinqin medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT yanghao medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT wangqin medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT chengyao medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT gantian medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT jianghua medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT dengjianhua medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron AT chenbingxu medicalimagesegmentationmodelbasedontriplegatemultilayerperceptron |