Cargando…
A Cognitive Sample Consensus Method for the Stitching of Drone-Based Aerial Images Supported by a Generative Adversarial Network for False Positive Reduction
When using drone-based aerial images for panoramic image generation, the unstableness of the shooting angle often deteriorates the quality of the resulting image. To prevent these polluting effects from affecting the stitching process, this study proposes deep learning-based outlier rejection scheme...
Autor principal: | Seo, Jeong-Kweon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002371/ https://www.ncbi.nlm.nih.gov/pubmed/35408091 http://dx.doi.org/10.3390/s22072474 |
Ejemplares similares
-
Generative Adversarial Networks and Data Clustering for Likable Drone Design
por: Yamin, Lee J., et al.
Publicado: (2022) -
Aerial photography and videography using drones
por: Cheng, Eric
Publicado: (2016) -
Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest
por: Claesson, A., et al.
Publicado: (2016) -
Audio-Based Drone Detection and Identification Using Deep Learning Techniques with Dataset Enhancement through Generative Adversarial Networks †
por: Al-Emadi, Sara, et al.
Publicado: (2021) -
Region-Based Static Video Stitching for Reduction of Parallax Distortion
por: Park, Keon-woo, et al.
Publicado: (2021)