Cargando…
Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite
Automated fiber placement (AFP) in situ consolidation of continuous CF/high-performance thermoplastic composite is the key technology for efficient and low-cost manufacturing of large thermoplastic composites. However, the void in the in situ composite is difficult to eliminate because of the high p...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002395/ https://www.ncbi.nlm.nih.gov/pubmed/35406274 http://dx.doi.org/10.3390/polym14071401 |
_version_ | 1784685878964125696 |
---|---|
author | Song, Qinghua Liu, Weiping Chen, Jiping Zhao, Dacheng Yi, Cheng Liu, Ruili Geng, Yi Yang, Yang Zheng, Yizhu Yuan, Yuhui |
author_facet | Song, Qinghua Liu, Weiping Chen, Jiping Zhao, Dacheng Yi, Cheng Liu, Ruili Geng, Yi Yang, Yang Zheng, Yizhu Yuan, Yuhui |
author_sort | Song, Qinghua |
collection | PubMed |
description | Automated fiber placement (AFP) in situ consolidation of continuous CF/high-performance thermoplastic composite is the key technology for efficient and low-cost manufacturing of large thermoplastic composites. However, the void in the in situ composite is difficult to eliminate because of the high pressure and the short consolidation time; the void content percentage consequently is the important defect that determines the performance of the thermoplastic composite parts. In this paper, based on the two-dimensional Newtonian fluid extrusion flow model, the void dynamics model and boundary conditions were established. The changes of the void content percentage were predicted by the cyclic iteration method. It was found that the void content percentage increased gradually along the direction of the layers’ thickness. With the increasing of the laying speed, the void content percentage increased gradually. With the increasing of the pressure of the roller, the void content percentage gradually decreased. When the AFP speed was 11 m/min and the pressure of the compaction roller reached 2000 N, the void content percentage of the layers fell below 2%. It was verified by the AFP test that the measured results of the layers’ thickness were in good agreement with the predicted results of the model, and the test results of the void content percentage were basically equivalent to the predicted results at different AFP speeds, which indicates that the kinetic model established in this paper is representative to predict the void content percentage. According to the metallographic observation, it was also found that the repeated pressure of the roller was helpful to reduce the void content percentage. |
format | Online Article Text |
id | pubmed-9002395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90023952022-04-13 Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite Song, Qinghua Liu, Weiping Chen, Jiping Zhao, Dacheng Yi, Cheng Liu, Ruili Geng, Yi Yang, Yang Zheng, Yizhu Yuan, Yuhui Polymers (Basel) Article Automated fiber placement (AFP) in situ consolidation of continuous CF/high-performance thermoplastic composite is the key technology for efficient and low-cost manufacturing of large thermoplastic composites. However, the void in the in situ composite is difficult to eliminate because of the high pressure and the short consolidation time; the void content percentage consequently is the important defect that determines the performance of the thermoplastic composite parts. In this paper, based on the two-dimensional Newtonian fluid extrusion flow model, the void dynamics model and boundary conditions were established. The changes of the void content percentage were predicted by the cyclic iteration method. It was found that the void content percentage increased gradually along the direction of the layers’ thickness. With the increasing of the laying speed, the void content percentage increased gradually. With the increasing of the pressure of the roller, the void content percentage gradually decreased. When the AFP speed was 11 m/min and the pressure of the compaction roller reached 2000 N, the void content percentage of the layers fell below 2%. It was verified by the AFP test that the measured results of the layers’ thickness were in good agreement with the predicted results of the model, and the test results of the void content percentage were basically equivalent to the predicted results at different AFP speeds, which indicates that the kinetic model established in this paper is representative to predict the void content percentage. According to the metallographic observation, it was also found that the repeated pressure of the roller was helpful to reduce the void content percentage. MDPI 2022-03-30 /pmc/articles/PMC9002395/ /pubmed/35406274 http://dx.doi.org/10.3390/polym14071401 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Qinghua Liu, Weiping Chen, Jiping Zhao, Dacheng Yi, Cheng Liu, Ruili Geng, Yi Yang, Yang Zheng, Yizhu Yuan, Yuhui Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite |
title | Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite |
title_full | Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite |
title_fullStr | Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite |
title_full_unstemmed | Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite |
title_short | Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite |
title_sort | research on void dynamics during in situ consolidation of cf/high-performance thermoplastic composite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002395/ https://www.ncbi.nlm.nih.gov/pubmed/35406274 http://dx.doi.org/10.3390/polym14071401 |
work_keys_str_mv | AT songqinghua researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT liuweiping researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT chenjiping researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT zhaodacheng researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT yicheng researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT liuruili researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT gengyi researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT yangyang researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT zhengyizhu researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite AT yuanyuhui researchonvoiddynamicsduringinsituconsolidationofcfhighperformancethermoplasticcomposite |