Cargando…
Denoising for 3D Point Cloud Based on Regularization of a Statistical Low-Dimensional Manifold
A point cloud obtained by stereo matching algorithm or three-dimensional (3D) scanner generally contains much complex noise, which will affect the accuracy of subsequent surface reconstruction or visualization processing. To eliminate the complex noise, a new regularization algorithm for denoising w...
Autores principales: | Liu, Youyu, Zou, Baozhu, Xu, Jiao, Yang, Siyang, Li, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002461/ https://www.ncbi.nlm.nih.gov/pubmed/35408279 http://dx.doi.org/10.3390/s22072666 |
Ejemplares similares
-
Sparse Regularization-Based Approach for Point Cloud Denoising and Sharp Features Enhancement
por: Leal, Esmeide, et al.
Publicado: (2020) -
Regularized Denoising Masked Visual Pretraining for Robust Embodied PointGoal Navigation
por: Peng, Jie, et al.
Publicado: (2023) -
PCA-Based Denoising Algorithm for Outdoor Lidar Point Cloud Data
por: Cheng, Dongyang, et al.
Publicado: (2021) -
Aspects of low dimensional manifolds
por: Morita, S, et al.
Publicado: (1992) -
Causal Learning via Manifold Regularization
por: Hill, Steven M., et al.
Publicado: (2019)