Cargando…

Highly Stretchable and Sensitive Multimodal Tactile Sensor Based on Conductive Rubber Composites to Monitor Pressure and Temperature

Stretchable and flexible tactile sensors have been extensively investigated for a variety of applications due to their outstanding sensitivity, flexibility, and biocompatibility compared with conventional tactile sensors. However, implementing stretchable multimodal sensors with high performance is...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Bing, Ma, Chi, Qian, Zhihui, Ren, Lei, Yuan, Hengyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002470/
https://www.ncbi.nlm.nih.gov/pubmed/35406168
http://dx.doi.org/10.3390/polym14071294
Descripción
Sumario:Stretchable and flexible tactile sensors have been extensively investigated for a variety of applications due to their outstanding sensitivity, flexibility, and biocompatibility compared with conventional tactile sensors. However, implementing stretchable multimodal sensors with high performance is still a challenge. In this study, a stretchable multimodal tactile sensor based on conductive rubber composites was fabricated. Because of the pressure-sensitive and temperature-sensitive effects of the conductive rubber composites, the developed sensor can simultaneously measure pressure and temperature, and the sensor presented high sensitivity (0.01171 kPa(−1) and 2.46–30.56%/°C) over a wide sensing range (0–110 kPa and 30–90 °C). The sensor also exhibited outstanding performance in terms of processability, stretchability, and repeatability. Furthermore, the fabricated stretchable multimodal tactile sensor did not require complex signal processing or a transmission circuit system. The strategy for stacking and layering conductive rubber composites of this work may supply a new idea for building multifunctional sensor-based electronics.