Cargando…
Time-Lag Aware Latent Variable Model for Prediction of Important Scenes Using Baseball Videos and Tweets
In this study, a novel prediction method for predicting important scenes in baseball videos using a time-lag aware latent variable model (Tl-LVM) is proposed. Tl-LVM adopts a multimodal variational autoencoder using tweets and videos as the latent variable model. It calculates the latent features fr...
Autores principales: | Hirasawa, Kaito, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002476/ https://www.ncbi.nlm.nih.gov/pubmed/35408079 http://dx.doi.org/10.3390/s22072465 |
Ejemplares similares
-
Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder †
por: Hirasawa, Kaito, et al.
Publicado: (2021) -
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
por: Ogawa, Naoki, et al.
Publicado: (2022) -
Prediction of Shooting Events in Soccer Videos Using Complete Bipartite Graphs and Players’ Spatial-Temporal Relations
por: Goka, Ryota, et al.
Publicado: (2023) -
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Diversity Learning Based on Multi-Latent Space for Medical Image Visual Question Generation
por: Zhu, He, et al.
Publicado: (2023)