Cargando…

Fast Constant-Time Modular Inversion over [Formula: see text] Resistant to Simple Power Analysis Attacks for IoT Applications

The advent of the Internet of Things (IoT) has enabled millions of potential new uses for consumers and businesses. However, with these new uses emerge some of the more pronounced risks in the connected object domain. Finite fields play a crucial role in many public-key cryptographic algorithms (PKC...

Descripción completa

Detalles Bibliográficos
Autores principales: Sghaier, Anissa, Zeghid, Medien, Massoud, Chiraz, Ahmed, Hassan Yousif, Chehri, Abdellah, Machhout, Mohsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002486/
https://www.ncbi.nlm.nih.gov/pubmed/35408148
http://dx.doi.org/10.3390/s22072535
Descripción
Sumario:The advent of the Internet of Things (IoT) has enabled millions of potential new uses for consumers and businesses. However, with these new uses emerge some of the more pronounced risks in the connected object domain. Finite fields play a crucial role in many public-key cryptographic algorithms (PKCs), which are used extensively for the security and privacy of IoT devices, consumer electronic equipment, and software systems. Given that inversion is the most sensitive and costly finite field arithmetic operation in PKCs, this paper proposes a new, fast, constant-time inverter over prime fields [Formula: see text] based on the traditional Binary Extended Euclidean (BEE) algorithm. A modified BEE algorithm (MBEEA) resistant to simple power analysis attacks (SPA) is presented, and the design performance area-delay over [Formula: see text] is explored. Furthermore, the BEE algorithm, modular addition, and subtraction are revisited to optimize and balance the MBEEA signal flow and resource utilization efficiency. The proposed MBEEA architecture was implemented and tested on Xilinx FPGA Virtex #5, #6, and #7 devices. Our implementation over [Formula: see text] (length of p = 256 bits) with 2035 slices achieved one modular inversion in only 1.12 μs on Virtex-7. Finally, we conducted a thorough comparison and performance analysis to demonstrate that the proposed design outperforms the competing designs, i.e., has a lower area-delay product (ADP) than the reported inverters.