Cargando…
Medicinal Chrysanthemum Detection under Complex Environments Using the MC-LCNN Model
Medicinal chrysanthemum detection is one of the desirable tasks of selective chrysanthemum harvesting robots. However, it is challenging to achieve accurate detection in real time under complex unstructured field environments. In this context, we propose a novel lightweight convolutional neural netw...
Autores principales: | Qi, Chao, Chang, Jiangxue, Zhang, Jiayu, Zuo, Yi, Ben, Zongyou, Chen, Kunjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002527/ https://www.ncbi.nlm.nih.gov/pubmed/35406818 http://dx.doi.org/10.3390/plants11070838 |
Ejemplares similares
-
Pseudo high-frequency boosts the generalization of a convolutional neural network for cassava disease detection
por: Zhang, Jiayu, et al.
Publicado: (2022) -
PromoterLCNN: A Light CNN-Based Promoter Prediction and Classification Model
por: Hernández, Daryl, et al.
Publicado: (2022) -
Tea Chrysanthemum Detection by Leveraging Generative Adversarial Networks and Edge Computing
por: Qi, Chao, et al.
Publicado: (2022) -
Multi-modal biometric fusion based continuous user authentication for E-proctoring using hybrid LCNN-Salp swarm optimization
por: Purohit, Himanshu, et al.
Publicado: (2021) -
Genetic Mapping of Quantitative Trait Loci Underlying Flowering Time in Chrysanthemum (Chrysanthemum morifolium)
por: Zhang, Fei, et al.
Publicado: (2013)