Cargando…
Biased Pressure: Cyclic Reinforcement Learning Model for Intelligent Traffic Signal Control
Existing inefficient traffic signal plans are causing traffic congestions in many urban areas. In recent years, many deep reinforcement learning (RL) methods have been proposed to control traffic signals in real-time by interacting with the environment. However, most of existing state-of-the-art RL...
Autores principales: | Ibrokhimov, Bunyodbek, Kim, Young-Joo, Kang, Sanggil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002556/ https://www.ncbi.nlm.nih.gov/pubmed/35408431 http://dx.doi.org/10.3390/s22072818 |
Ejemplares similares
-
Time Series Classification with InceptionFCN
por: Usmankhujaev, Saidrasul, et al.
Publicado: (2021) -
Effects analysis of reward functions on reinforcement learning for traffic signal control
por: Lee, Hyosun, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study
por: Tan, Jiyuan, et al.
Publicado: (2022) -
Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning
por: Bouktif, Salah, et al.
Publicado: (2021) -
Quantifying the impact of non-stationarity in reinforcement learning-based traffic signal control
por: Alegre, Lucas N., et al.
Publicado: (2021)