Cargando…
Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model
This article presents a regression tool for predicting the compressive strength of fly ash (FA) geopolymer concrete based on a process of optimising the Matlab code of a feedforward layered neural network (FLNN). From the literature, 189 samples of different FA geopolymer concrete mix-designs were c...
Autores principales: | Khalaf, Ali Abdulhasan, Kopecskó, Katalin, Merta, Ildiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002561/ https://www.ncbi.nlm.nih.gov/pubmed/35406295 http://dx.doi.org/10.3390/polym14071423 |
Ejemplares similares
-
Bayesian Regularized Artificial Neural Network Model to Predict Strength Characteristics of Fly-Ash and Bottom-Ash Based Geopolymer Concrete
por: Aneja, Sakshi, et al.
Publicado: (2021) -
Benefits of Sealed-Curing on Compressive Strength of Fly Ash-Based Geopolymers
por: Lee, Sujeong, et al.
Publicado: (2016) -
Ambient Cured Fly Ash Geopolymer Coatings for Concrete
por: Biondi, L., et al.
Publicado: (2019) -
Optimising Ambient Setting Bayer Derived Fly Ash Geopolymers
por: Jamieson, Evan, et al.
Publicado: (2016) -
Prediction of Compressive Strength of Fly Ash-Slag Based Geopolymer Paste Based on Multi-Optimized Artificial Neural Network
por: Bai, Min, et al.
Publicado: (2023)