Cargando…
Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP)
Speech discrimination is used by audiologists in diagnosing and determining treatment for hearing loss patients. Usually, assessing speech discrimination requires subjective responses. Using electroencephalography (EEG), a method that is based on event-related potentials (ERPs), could provide object...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002564/ https://www.ncbi.nlm.nih.gov/pubmed/35408316 http://dx.doi.org/10.3390/s22072702 |
_version_ | 1784685921085423616 |
---|---|
author | Charuthamrong, Pimwipa Israsena, Pasin Hemrungrojn, Solaphat Pan-ngum, Setha |
author_facet | Charuthamrong, Pimwipa Israsena, Pasin Hemrungrojn, Solaphat Pan-ngum, Setha |
author_sort | Charuthamrong, Pimwipa |
collection | PubMed |
description | Speech discrimination is used by audiologists in diagnosing and determining treatment for hearing loss patients. Usually, assessing speech discrimination requires subjective responses. Using electroencephalography (EEG), a method that is based on event-related potentials (ERPs), could provide objective speech discrimination. In this work we proposed a visual-ERP-based method to assess speech discrimination using pictures that represent word meaning. The proposed method was implemented with three strategies, each with different number of pictures and test sequences. Machine learning was adopted to classify between the task conditions based on features that were extracted from EEG signals. The results from the proposed method were compared to that of a similar visual-ERP-based method using letters and a method that is based on the auditory mismatch negativity (MMN) component. The P3 component and the late positive potential (LPP) component were observed in the two visual-ERP-based methods while MMN was observed during the MMN-based method. A total of two out of three strategies of the proposed method, along with the MMN-based method, achieved approximately 80% average classification accuracy by a combination of support vector machine (SVM) and common spatial pattern (CSP). Potentially, these methods could serve as a pre-screening tool to make speech discrimination assessment more accessible, particularly in areas with a shortage of audiologists. |
format | Online Article Text |
id | pubmed-9002564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90025642022-04-13 Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP) Charuthamrong, Pimwipa Israsena, Pasin Hemrungrojn, Solaphat Pan-ngum, Setha Sensors (Basel) Article Speech discrimination is used by audiologists in diagnosing and determining treatment for hearing loss patients. Usually, assessing speech discrimination requires subjective responses. Using electroencephalography (EEG), a method that is based on event-related potentials (ERPs), could provide objective speech discrimination. In this work we proposed a visual-ERP-based method to assess speech discrimination using pictures that represent word meaning. The proposed method was implemented with three strategies, each with different number of pictures and test sequences. Machine learning was adopted to classify between the task conditions based on features that were extracted from EEG signals. The results from the proposed method were compared to that of a similar visual-ERP-based method using letters and a method that is based on the auditory mismatch negativity (MMN) component. The P3 component and the late positive potential (LPP) component were observed in the two visual-ERP-based methods while MMN was observed during the MMN-based method. A total of two out of three strategies of the proposed method, along with the MMN-based method, achieved approximately 80% average classification accuracy by a combination of support vector machine (SVM) and common spatial pattern (CSP). Potentially, these methods could serve as a pre-screening tool to make speech discrimination assessment more accessible, particularly in areas with a shortage of audiologists. MDPI 2022-04-01 /pmc/articles/PMC9002564/ /pubmed/35408316 http://dx.doi.org/10.3390/s22072702 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Charuthamrong, Pimwipa Israsena, Pasin Hemrungrojn, Solaphat Pan-ngum, Setha Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP) |
title | Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP) |
title_full | Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP) |
title_fullStr | Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP) |
title_full_unstemmed | Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP) |
title_short | Automatic Speech Discrimination Assessment Methods Based on Event-Related Potentials (ERP) |
title_sort | automatic speech discrimination assessment methods based on event-related potentials (erp) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002564/ https://www.ncbi.nlm.nih.gov/pubmed/35408316 http://dx.doi.org/10.3390/s22072702 |
work_keys_str_mv | AT charuthamrongpimwipa automaticspeechdiscriminationassessmentmethodsbasedoneventrelatedpotentialserp AT israsenapasin automaticspeechdiscriminationassessmentmethodsbasedoneventrelatedpotentialserp AT hemrungrojnsolaphat automaticspeechdiscriminationassessmentmethodsbasedoneventrelatedpotentialserp AT panngumsetha automaticspeechdiscriminationassessmentmethodsbasedoneventrelatedpotentialserp |