Cargando…

Systematic Analysis of the Molecular Mechanisms of Cold and Hot Properties of Herbal Medicines

Effective treatments for patients experiencing temperature-related symptoms are limited. The hot and cold effects of traditional herbal medicines have been utilized to treat and manage these symptoms, but their molecular mechanisms are not fully understood. Previous studies with arbitrarily selected...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sang-Min, Baek, Su-Jin, Ban, Hyo-Jeong, Jin, Hee-Jeong, Cha, Seongwon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002596/
https://www.ncbi.nlm.nih.gov/pubmed/35406976
http://dx.doi.org/10.3390/plants11070997
Descripción
Sumario:Effective treatments for patients experiencing temperature-related symptoms are limited. The hot and cold effects of traditional herbal medicines have been utilized to treat and manage these symptoms, but their molecular mechanisms are not fully understood. Previous studies with arbitrarily selected herbs and ingredients may have produced biased results. Here, we aim to systematically elucidate the molecular mechanisms of the hot and cold properties of herbal medicines through an unbiased large-scale investigation of herbal ingredients, their target genes, and the transcriptome signatures induced by them. Using data regarding 243 herbs retrieved from two herbal medicine databases, we statistically identify (R)-Linalool, (-)-alpha-pinene, peruviol, (L)-alpha-terpineol, and cymol as five new hot-specific ingredients that share a common target, a norepinephrine transporter. However, no significant ingredients are cold-specific. We also statistically identify 14 hot- and 8 cold-specific new target genes. Pathway enrichment analysis of hot-specific target genes reveals the associated pathways including neurotransmitter reuptake, cold-induced thermogenesis, blood pressure regulation, adrenergic receptor signaling, and cation symporter activity. Cold-specific target genes are associated with the steroid pathway. Transcriptome analysis also shows that hot herbs are more strongly associated with coagulation and synaptic transmission than cold herbs. Our results, obtained from novel connections between herbal ingredients, target genes, and pathways, may contribute to the development of pharmacological treatment strategies for temperature-related pain using medicinal plants.