Cargando…
Condition Monitoring of Ball Bearings Based on Machine Learning with Synthetically Generated Data
Rolling element bearing faults significantly contribute to overall machine failures, which demand different strategies for condition monitoring and failure detection. Recent advancements in machine learning even further expedite the quest to improve accuracy in fault detection for economic purposes...
Autores principales: | Kahr, Matthias, Kovács, Gabor, Loinig, Markus, Brückl, Hubert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002605/ https://www.ncbi.nlm.nih.gov/pubmed/35408105 http://dx.doi.org/10.3390/s22072490 |
Ejemplares similares
-
Intelligent Diagnostics of Radial Internal Clearance in Ball Bearings with Machine Learning Methods
por: Ambrożkiewicz, Bartłomiej, et al.
Publicado: (2023) -
Ball and roller bearing engineering,
por: Palmgren, Arvid, 1890-
Publicado: (1945) -
Smart Fault-Detection Machine for Ball-Bearing System with Chaotic Mapping Strategy
por: Li, Shih-Yu, et al.
Publicado: (2019) -
Multi-Dimensional Mathematical Wear Models of Vibration Generated by Rolling Ball Bearings Made of AISI 52100 Bearing Steel
por: Zmarzły, Paweł
Publicado: (2020) -
HUST bearing: a practical dataset for ball bearing fault diagnosis
por: Thuan, Nguyen Duc, et al.
Publicado: (2023)