Cargando…
A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity
In response to the fact that most of the current research on silicone 3D printing suffers from structure collapse and dimensional mismatch, this paper proposes a heating-assisted direct writing printing method for commercial silicone rubber materials for preparing silicone foam with enhanced fidelit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002618/ https://www.ncbi.nlm.nih.gov/pubmed/35406197 http://dx.doi.org/10.3390/polym14071323 |
_version_ | 1784685934644559872 |
---|---|
author | Xu, Kang Li, Dongya Shang, Erwei Liu, Yu |
author_facet | Xu, Kang Li, Dongya Shang, Erwei Liu, Yu |
author_sort | Xu, Kang |
collection | PubMed |
description | In response to the fact that most of the current research on silicone 3D printing suffers from structure collapse and dimensional mismatch, this paper proposes a heating-assisted direct writing printing method for commercial silicone rubber materials for preparing silicone foam with enhanced fidelity. In the experimental processes, the effects of substrate temperature, printing pressure, and printing speed on the filament width were investigated using a controlled variable method. The results showed the following: (1) the diameter of silicone rubber filaments was positively correlated with the printing pressure and substrate temperature, but negatively correlated with the printing speed; (2) the filament collapse of the large filament spaced foams was significantly improved by the addition of the thermal field, which, in turn, improved the mechanical properties and manufacturing stability of the silicon foams. The heating-assisted direct writing process in this paper can facilitate the development of the field of microelectronics and the direct printing of biomaterials. |
format | Online Article Text |
id | pubmed-9002618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90026182022-04-13 A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity Xu, Kang Li, Dongya Shang, Erwei Liu, Yu Polymers (Basel) Article In response to the fact that most of the current research on silicone 3D printing suffers from structure collapse and dimensional mismatch, this paper proposes a heating-assisted direct writing printing method for commercial silicone rubber materials for preparing silicone foam with enhanced fidelity. In the experimental processes, the effects of substrate temperature, printing pressure, and printing speed on the filament width were investigated using a controlled variable method. The results showed the following: (1) the diameter of silicone rubber filaments was positively correlated with the printing pressure and substrate temperature, but negatively correlated with the printing speed; (2) the filament collapse of the large filament spaced foams was significantly improved by the addition of the thermal field, which, in turn, improved the mechanical properties and manufacturing stability of the silicon foams. The heating-assisted direct writing process in this paper can facilitate the development of the field of microelectronics and the direct printing of biomaterials. MDPI 2022-03-24 /pmc/articles/PMC9002618/ /pubmed/35406197 http://dx.doi.org/10.3390/polym14071323 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Kang Li, Dongya Shang, Erwei Liu, Yu A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity |
title | A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity |
title_full | A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity |
title_fullStr | A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity |
title_full_unstemmed | A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity |
title_short | A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity |
title_sort | heating-assisted direct ink writing method for preparation of pdms cellular structure with high manufacturing fidelity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002618/ https://www.ncbi.nlm.nih.gov/pubmed/35406197 http://dx.doi.org/10.3390/polym14071323 |
work_keys_str_mv | AT xukang aheatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity AT lidongya aheatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity AT shangerwei aheatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity AT liuyu aheatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity AT xukang heatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity AT lidongya heatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity AT shangerwei heatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity AT liuyu heatingassisteddirectinkwritingmethodforpreparationofpdmscellularstructurewithhighmanufacturingfidelity |