Cargando…
Acoustic Emission Source Location Using Finite Element Generated Delta-T Mapping
One of the most significant benefits of Acoustic Emission (AE) testing over other Non-Destructive Evaluation (NDE) techniques lies in its damage location capability over a wide area. The delta-T mapping technique developed by researchers has been shown to enable AE source location to a high level of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002672/ https://www.ncbi.nlm.nih.gov/pubmed/35408107 http://dx.doi.org/10.3390/s22072493 |
Sumario: | One of the most significant benefits of Acoustic Emission (AE) testing over other Non-Destructive Evaluation (NDE) techniques lies in its damage location capability over a wide area. The delta-T mapping technique developed by researchers has been shown to enable AE source location to a high level of accuracy in complex structures. However, the time-consuming and laborious data training process of the delta-T mapping technique has prevented this technique from large-scale application on large complex structures. In order to solve this problem, a Finite Element (FE) method was applied to model training data for localization of experimental AE events on a complex plate. Firstly, the FE model was validated through demonstrating consistency between simulated data and the experimental data in the study of Hsu-Nielsen (H-N) sources on a simple plate. Then, the FE model with the same parameters was applied to a planar location problem on a complex plate. It has been demonstrated that FE generated delta-T mapping data can achieve a reasonable degree of source location accuracy with an average error of 3.88 mm whilst decreasing the time and effort required for manually collecting and processing the training data. |
---|