Cargando…

A Systematic Literature Review on Distributed Machine Learning in Edge Computing

Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to...

Descripción completa

Detalles Bibliográficos
Autores principales: Filho, Carlos Poncinelli, Marques, Elias, Chang, Victor, dos Santos, Leonardo, Bernardini, Flavia, Pires, Paulo F., Ochi, Luiz, Delicato, Flavia C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002674/
https://www.ncbi.nlm.nih.gov/pubmed/35408281
http://dx.doi.org/10.3390/s22072665
_version_ 1784685948515123200
author Filho, Carlos Poncinelli
Marques, Elias
Chang, Victor
dos Santos, Leonardo
Bernardini, Flavia
Pires, Paulo F.
Ochi, Luiz
Delicato, Flavia C.
author_facet Filho, Carlos Poncinelli
Marques, Elias
Chang, Victor
dos Santos, Leonardo
Bernardini, Flavia
Pires, Paulo F.
Ochi, Luiz
Delicato, Flavia C.
author_sort Filho, Carlos Poncinelli
collection PubMed
description Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a distributed way, paying special attention to how techniques are adapted or designed to execute on these restricted devices. The techniques under discussion pervade the processes of caching, training, inference, and offloading on edge devices. We also explore the benefits and drawbacks of these strategies.
format Online
Article
Text
id pubmed-9002674
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90026742022-04-13 A Systematic Literature Review on Distributed Machine Learning in Edge Computing Filho, Carlos Poncinelli Marques, Elias Chang, Victor dos Santos, Leonardo Bernardini, Flavia Pires, Paulo F. Ochi, Luiz Delicato, Flavia C. Sensors (Basel) Review Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a distributed way, paying special attention to how techniques are adapted or designed to execute on these restricted devices. The techniques under discussion pervade the processes of caching, training, inference, and offloading on edge devices. We also explore the benefits and drawbacks of these strategies. MDPI 2022-03-30 /pmc/articles/PMC9002674/ /pubmed/35408281 http://dx.doi.org/10.3390/s22072665 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Filho, Carlos Poncinelli
Marques, Elias
Chang, Victor
dos Santos, Leonardo
Bernardini, Flavia
Pires, Paulo F.
Ochi, Luiz
Delicato, Flavia C.
A Systematic Literature Review on Distributed Machine Learning in Edge Computing
title A Systematic Literature Review on Distributed Machine Learning in Edge Computing
title_full A Systematic Literature Review on Distributed Machine Learning in Edge Computing
title_fullStr A Systematic Literature Review on Distributed Machine Learning in Edge Computing
title_full_unstemmed A Systematic Literature Review on Distributed Machine Learning in Edge Computing
title_short A Systematic Literature Review on Distributed Machine Learning in Edge Computing
title_sort systematic literature review on distributed machine learning in edge computing
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002674/
https://www.ncbi.nlm.nih.gov/pubmed/35408281
http://dx.doi.org/10.3390/s22072665
work_keys_str_mv AT filhocarlosponcinelli asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT marqueselias asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT changvictor asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT dossantosleonardo asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT bernardiniflavia asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT pirespaulof asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT ochiluiz asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT delicatoflaviac asystematicliteraturereviewondistributedmachinelearninginedgecomputing
AT filhocarlosponcinelli systematicliteraturereviewondistributedmachinelearninginedgecomputing
AT marqueselias systematicliteraturereviewondistributedmachinelearninginedgecomputing
AT changvictor systematicliteraturereviewondistributedmachinelearninginedgecomputing
AT dossantosleonardo systematicliteraturereviewondistributedmachinelearninginedgecomputing
AT bernardiniflavia systematicliteraturereviewondistributedmachinelearninginedgecomputing
AT pirespaulof systematicliteraturereviewondistributedmachinelearninginedgecomputing
AT ochiluiz systematicliteraturereviewondistributedmachinelearninginedgecomputing
AT delicatoflaviac systematicliteraturereviewondistributedmachinelearninginedgecomputing