Cargando…
A Systematic Literature Review on Distributed Machine Learning in Edge Computing
Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002674/ https://www.ncbi.nlm.nih.gov/pubmed/35408281 http://dx.doi.org/10.3390/s22072665 |
_version_ | 1784685948515123200 |
---|---|
author | Filho, Carlos Poncinelli Marques, Elias Chang, Victor dos Santos, Leonardo Bernardini, Flavia Pires, Paulo F. Ochi, Luiz Delicato, Flavia C. |
author_facet | Filho, Carlos Poncinelli Marques, Elias Chang, Victor dos Santos, Leonardo Bernardini, Flavia Pires, Paulo F. Ochi, Luiz Delicato, Flavia C. |
author_sort | Filho, Carlos Poncinelli |
collection | PubMed |
description | Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a distributed way, paying special attention to how techniques are adapted or designed to execute on these restricted devices. The techniques under discussion pervade the processes of caching, training, inference, and offloading on edge devices. We also explore the benefits and drawbacks of these strategies. |
format | Online Article Text |
id | pubmed-9002674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90026742022-04-13 A Systematic Literature Review on Distributed Machine Learning in Edge Computing Filho, Carlos Poncinelli Marques, Elias Chang, Victor dos Santos, Leonardo Bernardini, Flavia Pires, Paulo F. Ochi, Luiz Delicato, Flavia C. Sensors (Basel) Review Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a distributed way, paying special attention to how techniques are adapted or designed to execute on these restricted devices. The techniques under discussion pervade the processes of caching, training, inference, and offloading on edge devices. We also explore the benefits and drawbacks of these strategies. MDPI 2022-03-30 /pmc/articles/PMC9002674/ /pubmed/35408281 http://dx.doi.org/10.3390/s22072665 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Filho, Carlos Poncinelli Marques, Elias Chang, Victor dos Santos, Leonardo Bernardini, Flavia Pires, Paulo F. Ochi, Luiz Delicato, Flavia C. A Systematic Literature Review on Distributed Machine Learning in Edge Computing |
title | A Systematic Literature Review on Distributed Machine Learning in Edge Computing |
title_full | A Systematic Literature Review on Distributed Machine Learning in Edge Computing |
title_fullStr | A Systematic Literature Review on Distributed Machine Learning in Edge Computing |
title_full_unstemmed | A Systematic Literature Review on Distributed Machine Learning in Edge Computing |
title_short | A Systematic Literature Review on Distributed Machine Learning in Edge Computing |
title_sort | systematic literature review on distributed machine learning in edge computing |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002674/ https://www.ncbi.nlm.nih.gov/pubmed/35408281 http://dx.doi.org/10.3390/s22072665 |
work_keys_str_mv | AT filhocarlosponcinelli asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT marqueselias asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT changvictor asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT dossantosleonardo asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT bernardiniflavia asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT pirespaulof asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT ochiluiz asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT delicatoflaviac asystematicliteraturereviewondistributedmachinelearninginedgecomputing AT filhocarlosponcinelli systematicliteraturereviewondistributedmachinelearninginedgecomputing AT marqueselias systematicliteraturereviewondistributedmachinelearninginedgecomputing AT changvictor systematicliteraturereviewondistributedmachinelearninginedgecomputing AT dossantosleonardo systematicliteraturereviewondistributedmachinelearninginedgecomputing AT bernardiniflavia systematicliteraturereviewondistributedmachinelearninginedgecomputing AT pirespaulof systematicliteraturereviewondistributedmachinelearninginedgecomputing AT ochiluiz systematicliteraturereviewondistributedmachinelearninginedgecomputing AT delicatoflaviac systematicliteraturereviewondistributedmachinelearninginedgecomputing |