Cargando…

Genome-Wide Identification, Expression Pattern and Sequence Variation Analysis of SnRK Family Genes in Barley

Sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK) is a large family of protein kinases that play a significant role in plant stress responses. Although intensive studies have been conducted on SnRK members in some crops, little is known about the SnRK in barley. Using phylogenetic and co...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Jiangyan, Chen, Danyi, Su, Tingting, Shen, Qiufang, Wu, Dezhi, Zhang, Guoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002700/
https://www.ncbi.nlm.nih.gov/pubmed/35406955
http://dx.doi.org/10.3390/plants11070975
Descripción
Sumario:Sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK) is a large family of protein kinases that play a significant role in plant stress responses. Although intensive studies have been conducted on SnRK members in some crops, little is known about the SnRK in barley. Using phylogenetic and conserved motif analyses, we discovered 46 SnRK members scattered across barley’s 7 chromosomes and classified them into 3 sub-families. The gene structures of HvSnRKs showed the divergence among three subfamilies. Gene duplication and synteny analyses on the genomes of barley and rice revealed the evolutionary features of HvSnRKs. The promoter regions of HvSnRK family genes contained many ABRE, MBS and LTR elements responding to abiotic stresses, and their expression patterns varied with different plant tissues and abiotic stresses. HvSnRKs could interact with the components of ABA signaling pathway to respond to abiotic stress. Moreover, the haplotypes of HvSnRK2.5 closely associated with drought tolerance were detected in a barley core collection. The current results could be helpful for further exploration of the HvSnRK genes responding to abiotic stress tolerance in barley.