Cargando…
State-of-the-Art Capability of Convolutional Neural Networks to Distinguish the Signal in the Ionosphere
Recovering and distinguishing different ionospheric layers and signals usually requires slow and complicated procedures. In this work, we construct and train five convolutional neural network (CNN) models: DeepLab, fully convolutional DenseNet24 (FC-DenseNet24), deep watershed transform (DWT), Mask...
Autores principales: | Chang, Yu-Chi, Lin, Chia-Hsien, Dmitriev, Alexei V., Hsieh, Mon-Chai, Hsu, Hao-Wei, Lin, Yu-Ciang, Mendoza, Merlin M., Huang, Guan-Han, Tsai, Lung-Chih, Li, Yung-Hui, Tsogtbaatar, Enkhtuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002747/ https://www.ncbi.nlm.nih.gov/pubmed/35408372 http://dx.doi.org/10.3390/s22072758 |
Ejemplares similares
-
Recovery of Ionospheric Signals Using Fully Convolutional DenseNet and Its Challenges
por: Mendoza, Merlin M., et al.
Publicado: (2021) -
Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations
por: Li, Wei, et al.
Publicado: (2019) -
Ionospheric tomography /
por: Kuni{llig}tsyn, V{llig}iacheslav Evgenévich
Publicado: (2003) -
Ionospheric Correction Based on Ingestion of Global Ionospheric Maps into the NeQuick 2 Model
por: Yu, Xiao, et al.
Publicado: (2015) -
The sun and the ionosphere : short-wave solar radiation and its effect on the ionosphere /
por: Ivanov-Kholodnyi, Gor Semenovich
Publicado: (1972)