Cargando…
Deep 3D Neural Network for Brain Structures Segmentation Using Self-Attention Modules in MRI Images
In recent years, the use of deep learning-based models for developing advanced healthcare systems has been growing due to the results they can achieve. However, the majority of the proposed deep learning-models largely use convolutional and pooling operations, causing a loss in valuable data and foc...
Autores principales: | Laiton-Bonadiez, Camilo, Sanchez-Torres, German, Branch-Bedoya, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002763/ https://www.ncbi.nlm.nih.gov/pubmed/35408173 http://dx.doi.org/10.3390/s22072559 |
Ejemplares similares
-
Industry 4.0 Technologies Applied to the Rail Transportation Industry: A Systematic Review
por: Laiton-Bonadiez, Camilo, et al.
Publicado: (2022) -
Self-Supervised Wavelet-Based Attention Network for Semantic Segmentation of MRI Brain Tumor
por: Anusooya, Govindarajan, et al.
Publicado: (2023) -
Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor
por: He, Xueqin, et al.
Publicado: (2021) -
Axial Attention Convolutional Neural Network for Brain Tumor Segmentation with Multi-Modality MRI Scans
por: Tian, Weiwei, et al.
Publicado: (2022) -
Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network
por: Kim, Minki, et al.
Publicado: (2021)