Cargando…
Spatial Distribution Analysis of Novel Texture Feature Descriptors for Accurate Breast Density Classification
Breast density has been recognised as an important biomarker that indicates the risk of developing breast cancer. Accurate classification of breast density plays a crucial role in developing a computer-aided detection (CADe) system for mammogram interpretation. This paper proposes a novel texture de...
Autores principales: | Li, Haipeng, Mukundan, Ramakrishnan, Boyd, Shelley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002800/ https://www.ncbi.nlm.nih.gov/pubmed/35408286 http://dx.doi.org/10.3390/s22072672 |
Ejemplares similares
-
Novel Texture Feature Descriptors Based on Multi-Fractal Analysis and LBP for Classifying Breast Density in Mammograms
por: Li, Haipeng, et al.
Publicado: (2021) -
Robust phase-based texture descriptor for classification of breast ultrasound images
por: Cai, Lingyun, et al.
Publicado: (2015) -
Compact Hybrid Multi-Color Space Descriptor Using Clustering-Based Feature Selection for Texture Classification
por: Alimoussa, Mohamed, et al.
Publicado: (2022) -
Making texture descriptors invariant to blur
por: Gadermayr, Michael, et al.
Publicado: (2016) -
Scale invariant texture descriptors for classifying celiac disease
por: Hegenbart, Sebastian, et al.
Publicado: (2013)