Cargando…

Research on Electromagnetic Radiation Mechanism during Detonation of Energetic Material

In the process of deflagration of energetic materials, strong electromagnetic radiation is generated, which causes the surrounding electronic equipment to fail to work normally. To solve this problem, it is necessary to clarify the mechanism of electromagnetic radiation generated by energetic materi...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Yuanbo, Kong, Deren, Jiang, Jian, Gao, Shang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002833/
https://www.ncbi.nlm.nih.gov/pubmed/35408379
http://dx.doi.org/10.3390/s22072765
Descripción
Sumario:In the process of deflagration of energetic materials, strong electromagnetic radiation is generated, which causes the surrounding electronic equipment to fail to work normally. To solve this problem, it is necessary to clarify the mechanism of electromagnetic radiation generated by energetic materials. The mechanism of plasma changed by the deflagration of energetic materials is an important topic in the aerospace and geophysics fields. The academic community holds two main viewpoints on the mechanism of electromagnetic radiation generated by energetic materials: one is that the solid material is squeezed and deformed during the deflagration of energetic materials, and the charges of different polarities rub in space to form effective electric dipoles, which eventually generate electromagnetic radiation. Another view is that the deflagration of energetic materials causes the temperature of the medium to rise sharply, and bremsstrahlung is formed during the compression and diffusion of the high-temperature wave front, resulting in the generation of electromagnetic radiation. This paper, based on theoretical analysis and experimental data, holds the view that electromagnetic radiation is generated by the high-temperature thermal effect. It studies the relationship between temperature and electromagnetic radiation and obtains quantitative analysis conclusions.