Cargando…
Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing
Genus Tabebuia is famous for its traditional uses and valuable phytoconstituents. Our previous investigation of Tabebuia species noted the promising anticancer activity of T. guayacan Hemsl. leaves extract, however, the mechanism underlying the observed anticancer activity is still unexplored. The c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002841/ https://www.ncbi.nlm.nih.gov/pubmed/35406868 http://dx.doi.org/10.3390/plants11070888 |
_version_ | 1784685987458187264 |
---|---|
author | El-Hawary, Seham S. Mohammed, Rabab Taher, Marwa A. AbouZid, Sameh Fekry Mansour, Mostafa A. Almahmoud, Suliman A. Huwaimel, Bader Amin, Elham |
author_facet | El-Hawary, Seham S. Mohammed, Rabab Taher, Marwa A. AbouZid, Sameh Fekry Mansour, Mostafa A. Almahmoud, Suliman A. Huwaimel, Bader Amin, Elham |
author_sort | El-Hawary, Seham S. |
collection | PubMed |
description | Genus Tabebuia is famous for its traditional uses and valuable phytoconstituents. Our previous investigation of Tabebuia species noted the promising anticancer activity of T. guayacan Hemsl. leaves extract, however, the mechanism underlying the observed anticancer activity is still unexplored. The current research was designed to explore the phytochemical content as well as to address the phytoconstituent(s) responsible for the recorded anticancer activity. Accordingly, sixteen compounds were isolated, and their structures were elucidated using different spectroscopic techniques. The drug-likeness of the isolated compounds, as well as their binding affinity with four anticancer drug target receptors: CDK-2/6, topoisomerase-1, and VEGFR-2, were evaluated. Additionally, the most promising compounds were in vitro evaluated for inhibitory activities against CDK-2/6 and VEGFR-2 enzymes using kinase assays method. Corosolic acid (3) and luteolin-7-O-β-glucoside (16) were the most active inhibitors against CDK-2 (−13.44 kcal/mol) and topoisomerase 1 (−13.83 kcal/mol), respectively. Meanwhile, quercetin 3-O-β-xyloside (10) scored the highest binding free energies against both CDK-6 (−16.23 kcal/mol) as well as against VEGFR-2 protein targets (−10.39 kcal/mol). Molecular dynamic simulation indicated that quercetin 3-O-β-xyloside (10) exhibited the least fluctuations and deviations from the starting binding pose with RMSD (2.6 Å). Interestingly, in vitro testing results confirmed the potent activity of 10 (IC(50) = 0.154 µg/mL) compared to IC(50) = 0.159 µg/mL of the reference drug ribociclib. These findings suggest the three noted compounds (3, 10, and 16) for further in vivo anticancer studies. |
format | Online Article Text |
id | pubmed-9002841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90028412022-04-13 Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing El-Hawary, Seham S. Mohammed, Rabab Taher, Marwa A. AbouZid, Sameh Fekry Mansour, Mostafa A. Almahmoud, Suliman A. Huwaimel, Bader Amin, Elham Plants (Basel) Article Genus Tabebuia is famous for its traditional uses and valuable phytoconstituents. Our previous investigation of Tabebuia species noted the promising anticancer activity of T. guayacan Hemsl. leaves extract, however, the mechanism underlying the observed anticancer activity is still unexplored. The current research was designed to explore the phytochemical content as well as to address the phytoconstituent(s) responsible for the recorded anticancer activity. Accordingly, sixteen compounds were isolated, and their structures were elucidated using different spectroscopic techniques. The drug-likeness of the isolated compounds, as well as their binding affinity with four anticancer drug target receptors: CDK-2/6, topoisomerase-1, and VEGFR-2, were evaluated. Additionally, the most promising compounds were in vitro evaluated for inhibitory activities against CDK-2/6 and VEGFR-2 enzymes using kinase assays method. Corosolic acid (3) and luteolin-7-O-β-glucoside (16) were the most active inhibitors against CDK-2 (−13.44 kcal/mol) and topoisomerase 1 (−13.83 kcal/mol), respectively. Meanwhile, quercetin 3-O-β-xyloside (10) scored the highest binding free energies against both CDK-6 (−16.23 kcal/mol) as well as against VEGFR-2 protein targets (−10.39 kcal/mol). Molecular dynamic simulation indicated that quercetin 3-O-β-xyloside (10) exhibited the least fluctuations and deviations from the starting binding pose with RMSD (2.6 Å). Interestingly, in vitro testing results confirmed the potent activity of 10 (IC(50) = 0.154 µg/mL) compared to IC(50) = 0.159 µg/mL of the reference drug ribociclib. These findings suggest the three noted compounds (3, 10, and 16) for further in vivo anticancer studies. MDPI 2022-03-26 /pmc/articles/PMC9002841/ /pubmed/35406868 http://dx.doi.org/10.3390/plants11070888 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article El-Hawary, Seham S. Mohammed, Rabab Taher, Marwa A. AbouZid, Sameh Fekry Mansour, Mostafa A. Almahmoud, Suliman A. Huwaimel, Bader Amin, Elham Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing |
title | Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing |
title_full | Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing |
title_fullStr | Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing |
title_full_unstemmed | Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing |
title_short | Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing |
title_sort | characterization of promising cytotoxic metabolites from tabebuia guayacan hemsl.: computational prediction and in vitro testing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002841/ https://www.ncbi.nlm.nih.gov/pubmed/35406868 http://dx.doi.org/10.3390/plants11070888 |
work_keys_str_mv | AT elhawarysehams characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting AT mohammedrabab characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting AT tahermarwaa characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting AT abouzidsamehfekry characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting AT mansourmostafaa characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting AT almahmoudsulimana characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting AT huwaimelbader characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting AT aminelham characterizationofpromisingcytotoxicmetabolitesfromtabebuiaguayacanhemslcomputationalpredictionandinvitrotesting |