Cargando…
MFDroid: A Stacking Ensemble Learning Framework for Android Malware Detection
As Android is a popular a mobile operating system, Android malware is on the rise, which poses a great threat to user privacy and security. Considering the poor detection effects of the single feature selection algorithm and the low detection efficiency of traditional machine learning methods, we pr...
Autores principales: | Wang, Xusheng, Zhang, Linlin, Zhao, Kai, Ding, Xuhui, Yu, Mingming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002842/ https://www.ncbi.nlm.nih.gov/pubmed/35408211 http://dx.doi.org/10.3390/s22072597 |
Ejemplares similares
-
Malware detection in Android phones
por: Malik, Sapna
Publicado: (2017) -
Android malware and analysis
por: Dunham, Ken
Publicado: (2014) -
Evaluation and classification of obfuscated Android malware through deep learning using ensemble voting mechanism
por: Aurangzeb, Sana, et al.
Publicado: (2023) -
The rise of obfuscated Android malware and impacts on detection methods
por: Elsersy, Wael F., et al.
Publicado: (2022) -
Automated Android Malware Detection Using User Feedback
por: Duque, João, et al.
Publicado: (2022)