Cargando…
Nucleating Agents to Enhance Poly(l-Lactide) Fiber Crystallization during Industrial-Scale Melt Spinning
The nucleating agent N,N′-bis(2-hydroxyethyl)-terephthalamide (BHET) has promising effects on poly(l-lactide) (PLA) under quiescent conditions and for injection molding applications, but its suitability for industrial-scale fiber melt spinning is unclear. We therefore determined the effects of 1% an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002846/ https://www.ncbi.nlm.nih.gov/pubmed/35406268 http://dx.doi.org/10.3390/polym14071395 |
Sumario: | The nucleating agent N,N′-bis(2-hydroxyethyl)-terephthalamide (BHET) has promising effects on poly(l-lactide) (PLA) under quiescent conditions and for injection molding applications, but its suitability for industrial-scale fiber melt spinning is unclear. We therefore determined the effects of 1% and 2% (w/w) BHET on the crystallinity, tenacity, and elongation at break of PLA fibers compared to pure PLA and PLA plus talc as a reference nucleating agent. Fibers were spun at take-up velocities of 800, 1400 and 2000 m/min and at drawing at ratios of 1.1–4.0, reaching a final winding speed of 3600 m/min. The fibers were analyzed by differential scanning calorimetry, wide-angle X-ray diffraction, gel permeation chromatography and tensile testing. Statistical analysis of variance was used to determine the combined effects of the spin-line parameters on the material properties. We found that the fiber draw ratio and take-up velocity were the most important factors affecting tenacity and elongation, but the addition of BHET reduced the mechanical performance of the fibers. The self-organizing properties of BHET were not expressed due to the rapid quenching of the fibers, leading to the formation of α′-crystals. Understanding the behavior of BHET in the PLA matrix provides information on the performance of nucleation agents during high-speed processing that will allow processing improvements in the future. |
---|