Cargando…
Zero-Day Malware Detection and Effective Malware Analysis Using Shapley Ensemble Boosting and Bagging Approach
Software products from all vendors have vulnerabilities that can cause a security concern. Malware is used as a prime exploitation tool to exploit these vulnerabilities. Machine learning (ML) methods are efficient in detecting malware and are state-of-art. The effectiveness of ML models can be augme...
Autores principales: | Kumar, Rajesh, Subbiah, Geetha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002855/ https://www.ncbi.nlm.nih.gov/pubmed/35408413 http://dx.doi.org/10.3390/s22072798 |
Ejemplares similares
-
Malware Analysis and Detection Engineering: A Comprehensive Approach to Detect and Analyze Modern Malware
por: Mohanta, Abhijit, et al.
Publicado: (2020) -
Malware detection
por: Nandal, Priyanka
Publicado: (2017) -
ZeVigilante: Detecting Zero-Day Malware Using Machine Learning and Sandboxing Analysis Techniques
por: Alhaidari, Fahd, et al.
Publicado: (2022) -
Homology analysis of malware based on ensemble learning and multifeatures
por: Xue, Di, et al.
Publicado: (2019) -
An Efficient DenseNet-Based Deep Learning Model for Malware Detection
por: Hemalatha, Jeyaprakash, et al.
Publicado: (2021)