Cargando…
COV-DLS: Prediction of COVID-19 from X-Rays Using Enhanced Deep Transfer Learning Techniques
In this paper, modifications in neoteric architectures such as VGG16, VGG19, ResNet50, and InceptionV3 are proposed for the classification of COVID-19 using chest X-rays. The proposed architectures termed “COV-DLS” consist of two phases: heading model construction and classification. The heading mod...
Autores principales: | Kumar, Vijay, Zarrad, Anis, Gupta, Rahul, Cheikhrouhou, Omar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002900/ https://www.ncbi.nlm.nih.gov/pubmed/35422979 http://dx.doi.org/10.1155/2022/6216273 |
Ejemplares similares
-
An optimized filling method for capillary DLS
por: Ruseva, Valentina, et al.
Publicado: (2019) -
Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images
por: Alammar, Zaenab, et al.
Publicado: (2023) -
Detection of developmental dysplasia of the hip in X-ray images using deep transfer learning
por: Fraiwan, Mohammad, et al.
Publicado: (2022) -
Pneumonia Transfer Learning Deep Learning Model from Segmented X-rays
por: Alharbi, Amal H., et al.
Publicado: (2022) -
An Overview of Deep Learning Techniques on Chest X-Ray and CT Scan Identification of COVID-19
por: Serena Low, Woan Ching, et al.
Publicado: (2021)