Cargando…
Automatic COVID-19 Lung Infection Segmentation through Modified Unet Model
The coronavirus (COVID-19) pandemic has had a terrible impact on human lives globally, with far-reaching consequences for the health and well-being of many people around the world. Statistically, 305.9 million people worldwide tested positive for COVID-19, and 5.48 million people died due to COVID-1...
Autores principales: | Shamim, Sania, Awan, Mazhar Javed, Mohd Zain, Azlan, Naseem, Usman, Mohammed, Mazin Abed, Garcia-Zapirain, Begonya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002904/ https://www.ncbi.nlm.nih.gov/pubmed/35422980 http://dx.doi.org/10.1155/2022/6566982 |
Ejemplares similares
-
Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach
por: Javed Awan, Mazhar, et al.
Publicado: (2021) -
Connected-UNets: a deep learning architecture for breast mass segmentation
por: Baccouche, Asma, et al.
Publicado: (2021) -
Automated Knee MR Images Segmentation of Anterior Cruciate Ligament Tears
por: Awan, Mazhar Javed, et al.
Publicado: (2022) -
Retracted: Automatic COVID-19 Lung Infection Segmentation through Modified Unet Model
por: Healthcare Engineering, Journal of
Publicado: (2023) -
Simulating Federated Transfer Learning for Lung Segmentation using Modified UNet Model
por: Ambesange, Sateesh, et al.
Publicado: (2023)