Cargando…
Detection of Highway Pavement Damage Based on a CNN Using Grayscale and HOG Features
Aiming at the demand for rapid detection of highway pavement damage, many deep learning methods based on convolutional neural networks (CNNs) have been developed. However, CNN methods with raw image data require a high-performance hardware configuration and cost machine time. To reduce machine time...
Autores principales: | Chen, Guo-Hong, Ni, Jie, Chen, Zhuo, Huang, Hao, Sun, Yun-Lei, Ip, Wai Hung, Yung, Kai Leung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002920/ https://www.ncbi.nlm.nih.gov/pubmed/35408070 http://dx.doi.org/10.3390/s22072455 |
Ejemplares similares
-
Bimodal CNN for cardiovascular disease classification by co-training ECG grayscale images and scalograms
por: Yoon, Taeyoung, et al.
Publicado: (2023) -
Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway
por: Pascucci, Simone, et al.
Publicado: (2008) -
Region Based CNN for Foreign Object Debris Detection on Airfield Pavement
por: Cao, Xiaoguang, et al.
Publicado: (2018) -
Damage Detection and Localization of Bridge Deck Pavement Based on Deep Learning
por: Ni, Youhao, et al.
Publicado: (2023) -
CNN Deep Learning with Wavelet Image Fusion of CCD RGB-IR and Depth-Grayscale Sensor Data for Hand Gesture Intention Recognition
por: Ding, Ing-Jr, et al.
Publicado: (2022)