Cargando…
Iris Image Compression Using Deep Convolutional Neural Networks
Compression is a way of encoding digital data so that it takes up less storage and requires less network bandwidth to be transmitted, which is currently an imperative need for iris recognition systems due to the large amounts of data involved, while deep neural networks trained as image auto-encoder...
Autores principales: | Jalilian, Ehsaneddin, Hofbauer, Heinz, Uhl, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002923/ https://www.ncbi.nlm.nih.gov/pubmed/35408311 http://dx.doi.org/10.3390/s22072698 |
Ejemplares similares
-
Fisher encoding of convolutional neural network features for endoscopic image classification
por: Wimmer, Georg, et al.
Publicado: (2018) -
Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization
por: Subba Reddy, Tatireddy, et al.
Publicado: (2022) -
Verification of Deep Convolutional Neural Networks Using ImageStars
por: Tran, Hoang-Dung, et al.
Publicado: (2020) -
Reference-Driven Compressed Sensing MR Image Reconstruction Using Deep Convolutional Neural Networks without Pre-Training
por: Zhao, Di, et al.
Publicado: (2020) -
An Efficient and Accurate Iris Recognition Algorithm Based on a Novel Condensed 2-ch Deep Convolutional Neural Network
por: Liu, Guoyang, et al.
Publicado: (2021)