Cargando…
Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics—Part 2: Accuracy
Two-dimensional deep-learning pose estimation algorithms can suffer from biases in joint pose localizations, which are reflected in triangulated coordinates, and then in 3D joint angle estimation. Pose2Sim, our robust markerless kinematics workflow, comes with a physically consistent OpenSim skeleta...
Autores principales: | Pagnon, David, Domalain, Mathieu, Reveret, Lionel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002957/ https://www.ncbi.nlm.nih.gov/pubmed/35408326 http://dx.doi.org/10.3390/s22072712 |
Ejemplares similares
-
Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics—Part 1: Robustness
por: Pagnon, David, et al.
Publicado: (2021) -
Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing
por: Lahkar, Bhrigu K., et al.
Publicado: (2022) -
A Markerless Pose Estimator Applicable to Limbless Animals
por: Garg, Vranda, et al.
Publicado: (2022) -
Towards markerless surgical tool and hand pose estimation
por: Hein, Jonas, et al.
Publicado: (2021) -
Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras
por: Nakano, Nobuyasu, et al.
Publicado: (2020)