Cargando…
A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition
Activity and Fall detection have been a topic of keen interest in the field of ambient assisted living system research. Such systems make use of different sensing mechanisms to monitor human motion and aim to ascertain the activity being performed for health monitoring and other purposes. Towards th...
Autores principales: | Syed, Abbas Shah, Sierra-Sosa, Daniel, Kumar, Anup, Elmaghraby, Adel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002977/ https://www.ncbi.nlm.nih.gov/pubmed/35408163 http://dx.doi.org/10.3390/s22072547 |
Ejemplares similares
-
A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling
por: Syed, Abbas Shah, et al.
Publicado: (2021) -
Making Cities Smarter—Optimization Problems for the IoT Enabled Smart City Development: A Mapping of Applications, Objectives, Constraints
por: Syed, Abbas Shah, et al.
Publicado: (2022) -
Deep Learning Techniques for Speech Emotion Recognition, from Databases to Models
por: Abbaschian, Babak Joze, et al.
Publicado: (2021) -
Melanoma Detection Using XGB Classifier Combined with Feature Extraction and K-Means SMOTE Techniques
por: Chang, Chih-Chi, et al.
Publicado: (2022) -
Action Recognition by an Attention-Aware Temporal Weighted Convolutional Neural Network
por: Wang, Le, et al.
Publicado: (2018)