Cargando…
RDCTrans U-Net: A Hybrid Variable Architecture for Liver CT Image Segmentation
Segmenting medical images is a necessary prerequisite for disease diagnosis and treatment planning. Among various medical image segmentation tasks, U-Net-based variants have been widely used in liver tumor segmentation tasks. In view of the highly variable shape and size of tumors, in order to impro...
Autores principales: | Li, Lingyun, Ma, Hongbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003011/ https://www.ncbi.nlm.nih.gov/pubmed/35408067 http://dx.doi.org/10.3390/s22072452 |
Ejemplares similares
-
U-Net combined with multi-scale attention mechanism for liver segmentation in CT images
por: Wu, Jiawei, et al.
Publicado: (2021) -
Hybrid U‐Net‐based deep learning model for volume segmentation of lung nodules in CT images
por: Wang, Yifan, et al.
Publicado: (2022) -
Modified U-NET Architecture for Segmentation of Skin Lesion
por: Anand, Vatsala, et al.
Publicado: (2022) -
Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation
por: Lu, Haoran, et al.
Publicado: (2022) -
Image Semantic Segmentation of Underwater Garbage with Modified U-Net Architecture Model
por: Wei, Lifu, et al.
Publicado: (2022)