Cargando…
Detecting Trivariate Associations in High-Dimensional Datasets
Detecting correlations in high-dimensional datasets plays an important role in data mining and knowledge discovery. While recent works achieve promising results, detecting multivariable correlations especially trivariate associations still remains a challenge. For example, maximal information coeffi...
Autores principales: | Liu, Chuanlu, Wang, Shuliang, Yuan, Hanning, Dang, Yingxu, Liu, Xiaojia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003031/ https://www.ncbi.nlm.nih.gov/pubmed/35408419 http://dx.doi.org/10.3390/s22072806 |
Ejemplares similares
-
Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness
por: Matt, Michael Andreas
Publicado: (2012) -
A Trivariate Extreme Value Distribution Applied to Flood Frequency Analysis
por: Escalante-Sandoval, Carlos A., et al.
Publicado: (1994) -
Trivariate Empirical Mode Decomposition via Convex Optimization for Rolling Bearing Condition Identification
por: Lv, Yong, et al.
Publicado: (2018) -
MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition
por: Makkeh, Abdullah, et al.
Publicado: (2019) -
Trivariate mover‐stayer counting process models for investigating joint damage in psoriatic arthritis
por: Yiu, Sean, et al.
Publicado: (2016)