Cargando…
Skeleton-Based Spatio-Temporal U-Network for 3D Human Pose Estimation in Video
Despite the great progress in 3D pose estimation from videos, there is still a lack of effective means to extract spatio-temporal features of different granularity from complex dynamic skeleton sequences. To tackle this problem, we propose a novel, skeleton-based spatio-temporal U-Net(STUNet) scheme...
Autores principales: | Li, Weiwei, Du, Rong, Chen, Shudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003032/ https://www.ncbi.nlm.nih.gov/pubmed/35408188 http://dx.doi.org/10.3390/s22072573 |
Ejemplares similares
-
Spatio-Temporal Calibration of Multiple Kinect Cameras Using 3D Human Pose
por: Eichler, Nadav, et al.
Publicado: (2022) -
Future Pose Prediction from 3D Human Skeleton Sequence with Surrounding Situation
por: Fujita, Tomohiro, et al.
Publicado: (2023) -
Spatio-temporal prediction and reconstruction network for video anomaly detection
por: Liu, Ting, et al.
Publicado: (2022) -
Generalized Pose Decoupled Network for Unsupervised 3D Skeleton Sequence-Based Action Representation Learning
por: Liu, Mengyuan, et al.
Publicado: (2022) -
3D Static Point Cloud Registration by Estimating Temporal Human Pose at Multiview
por: Park, Byung-Seo, et al.
Publicado: (2022)